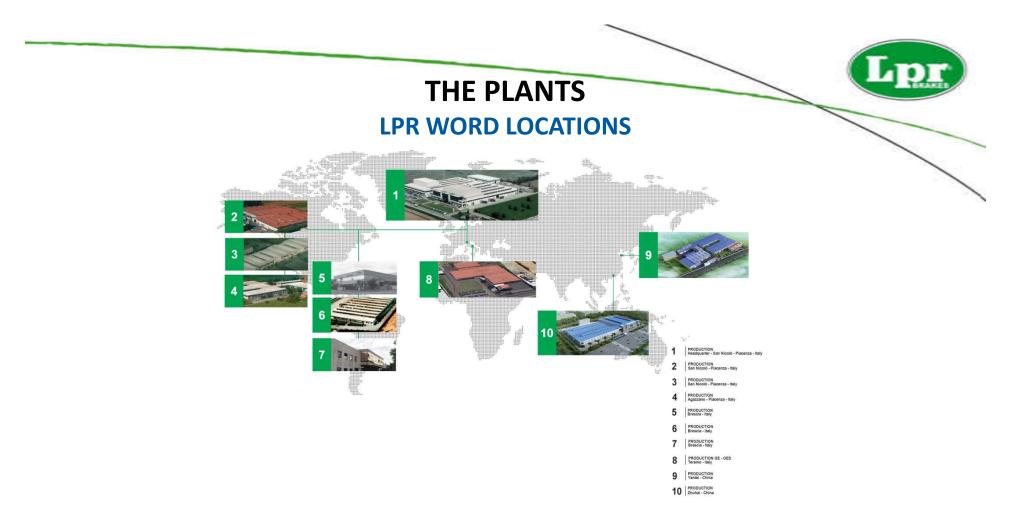
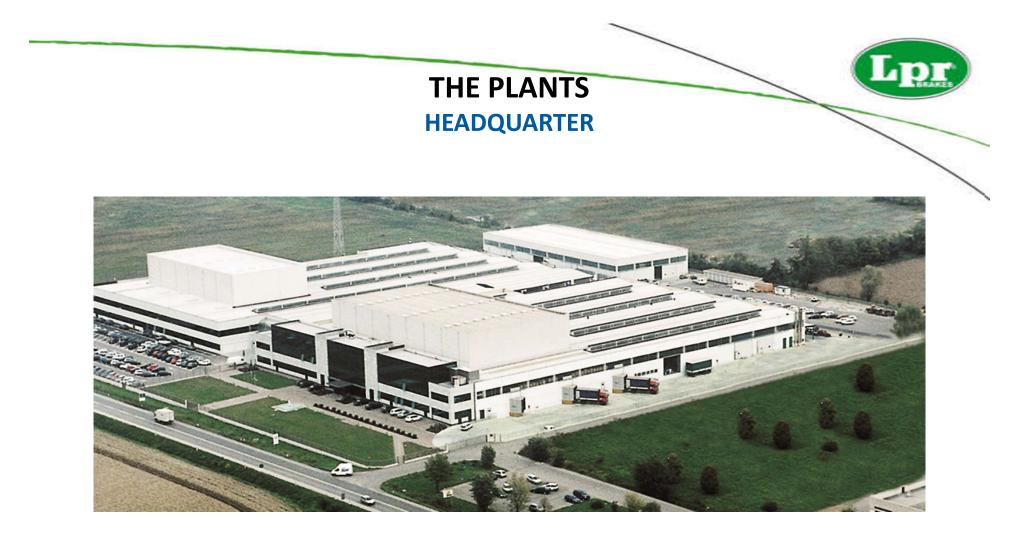
A LONG EXPERIENCE FOR A SHORT BRAKING LPR Brakes

www.lpr.it

GROWTH 50 YEARS OF HISTORY, GROWTH, CONQUEST AND EVOLUTION



YESTERDAY


TODAY

- **1952**: Mr. Pietro Arici founded a company manufacturing brake & clutch hydraulics for first equipment.
- 1977: the company moved and the name Lpr was born with a new focus towards brake & clutch hydraulics. Thanks to the management of the new President, Luciano Arici, and the level of investment in additional tools and plants, in only a few years LPR has become a world leader for quality and innovation.
- **Early 90's**: Lpr extended the range to include other products such as brake pads and shoes, discs, drums and hoses.
- **Today**: LPR owns manufacturing plants and distribution centres in strategic places to fully satisfy the current market demand and to provide its customers with a great service and high quality products.

LPR owns manufacturing plants and distribution centers in strategic places to fully satisfy the current market demand and to provide its customers with a great service and high quality products.

- ✓ 10 plants and distribution centres worldwide
- ✓ 96% Car parc covered
- ✓ 17,530 items in range
- 25,000,000 pieces produced in 1 year

- ✓ Since 1999 new headquarter.
- ✓ Over 55.000 m²

- ✓ Founded in 2005
- ✓ Over 50.000 m²

Due to its commitment to quality and research, LPR has been awarded with several important certifications:

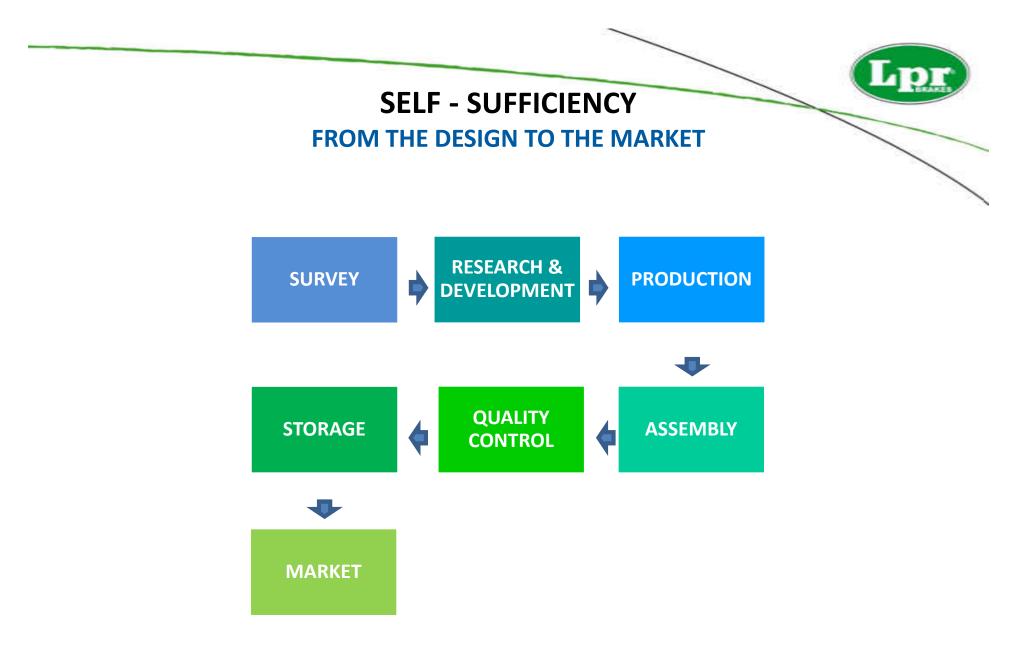
- ✓ ISO TS 16949:2009
- ✓ ISO 9001:2008
- ✓ ISO 14001:2004
- ✓ Ferrari authorized supplier
- ✓ ECE R90 type-approval (IDIADA / KBA / VCA)

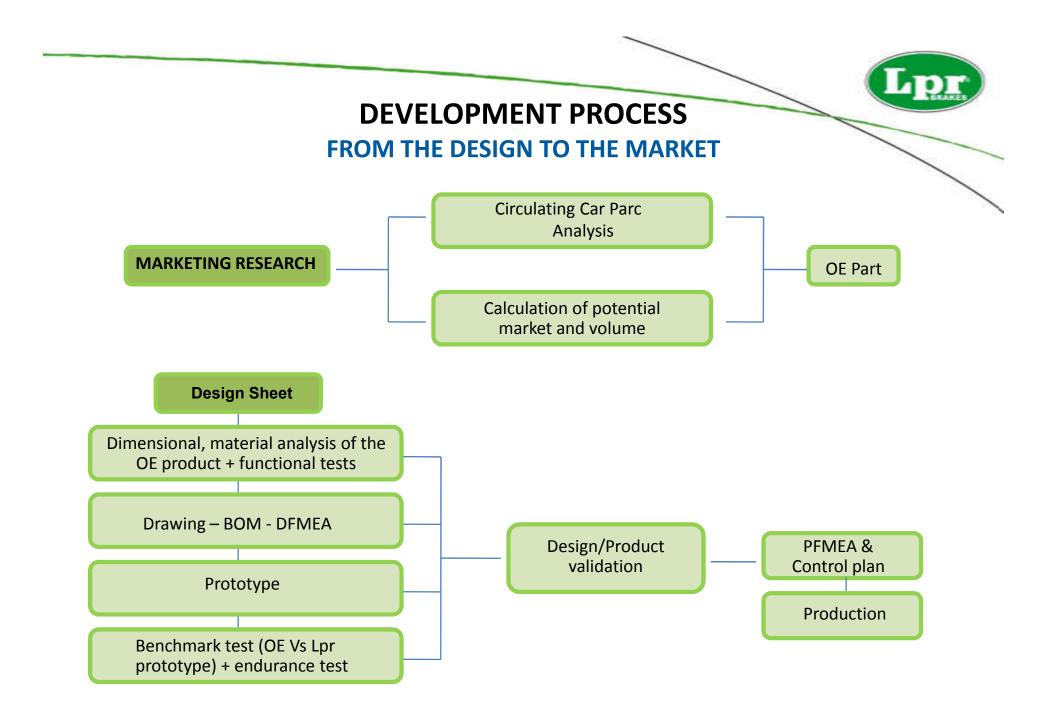
LPR awarded to be in the top ten of Reanult suppliers for the year 2014.

CERTIFICATIONS PSA SUPPLIER AWARDS

After - Sales Delivery Performance Award Paris, May 24th 2016

LPR is a major supplier for PSA activities specialized in braking systems for the after-market business.


This category recognizes suppliers for their quality of service, as measured by their on-time, on-spec delivery of spare parts to the dealer network, which has a direct effect on customer loyalty.


LPR PHILOSOPHY CUSTUMER SATISFACTION

- Self sufficiency is the company's core philosophy, with all processes and operations performed within the organization: from the research and design of components, to the production, quality and global distribution.
- ✓ Self-Sufficiency
- ✓ Speed in developing new items
- ✓ Flexibility
- ✓ Availability
- ✓ Competitiveness
- All main guidelines to achieve:

CUSTOMER SATISFACTION

Self-sufficiency is a key factor for the success of any company.

LPR PHILOSOPHY PRODUCT DEVELOPMENT

- OE Reference (marketing research)
- Application (marketing research)
- OE sample (Lpr purchases an OE sample before the development of a new item)
- Creation of the Lpr part number
- Design of the Lpr part number
- Production of the Lpr prototype
- Performances comparison between the OE sample and Lpr existing products
- Formulation development (if necessary)
- Structured testing plan (dyno test, car test and laboratory test...)

Once the Lpr prototype is approved, both R&D and Quality Dept. release the new item for Production (through Manufacturing Instructions), but once the machine is set up to produce a new batch, the first units are checked by quality dept. to be sure all the important and critical dimensions are within tolerances.

PRODUCT DEVELOPMENT OE RESEARCH

Main Sources:

1. **NEW OE REFERENCES:** Marketing Dept identify new OE and applications.

Example: LPR REF 1748

Make	Model	Fuel	Stroke	Туре	CC	KW	Valves	Drive	Body	Serie	Year From	ArticleGroup	Oe01	status
MERCEDES	Sprinter 210D	Diesel	2.1	CDi	2143	70	16	RW	VAN	B906	2009	Master cylinder	0004317601	New
MERCEDES	Sprinter 216	Petrol	1.8		1796	115	16	RW	BUS	B906	2009	Master cylinder	0004317601	New

Then it checks the applications in the CarParc ranges of Europe, Asia, EMEA to be able to quantify the coverage of different market segments and geographical locations. In addition, Marketing Dept. checks also the sales forecast of the new applications in the global markets. When the several analysis are completed, the Marketing Dept. can assess which and how many parts are needed to meet market demand and decide where to focus the new developments.

2. **REQUESTS FROM CUSTOMERS:** Lpr can develop and produce specific spare parts on demand based on sample. Generally, the development time is between 3 and 6 months.

The outcome of this process is a wide product range constantly growing.

SELF - SUFFICIENCY RESEARCH AND DESIGN

Research is a fundamental aspect of the growth and international success of LPR.

Commitment to research means not only better quality products, but also developing innovative technical solutions, improvement of all the production stages and a constant drive towards advanced technologies.

SELF - SUFFICIENCY

RESEARCH AND DEVELOPMENT

Technical sheet

LPR S.r.l.	SC	HE	DA PF	ROG	θET	TO Easy k	Cit	TEAM SVILUPPO PROGETT
odice commerciale LP	R	Codic	e O.E.		C	ostruttore O.E.		
Codice disegno intern	0			TIME	том	ARKET		
Descrizione			Note					
Applicazione			/					
DEFIN	IZIONE	ATTIV	ITA'			DATA		ENTE
ATTI	VITA'			SI	NO	ESECUZIONE		ENTE
		DAT	E REQU	IISITI I	DI BAS	SE .		
Analisi campione origina	ale – fun	zionale					Lab. P	rove / qualità
Analisi campione origina	ale – din	nension	ale				Uff. tee	cnico / qualità
Analisi campione origina	ale – ma	teriali					Lab	o. Chimico
Requisiti di base / Obiet	ttivi di af	fidabilita	à				Uf	f. tecnico
Quality Function Deploy	/ment (C	(FD)					Uff. te	cnico/qualità
Standardizzazione							Uf	f. tecnico
Riesame dati e requisiti	di base							
		S٧	ILUPPO	PROG	ETTO			
Disegni							Uf	f. tecnico
Distinta base tecnica							Uf	f. tecnico
Caratteristiche particola	ri						Uff. te	cnico/qualità
Utilizzo del prodotto							Uff. te	cnico/qualità
FMEA di progetto (solo pe							Uf	f. tecnico
Specifiche tecniche di p	rogetto	solo per re	cuperatori				Uf	f. tecnico
Specifiche tecniche di p	rova						Cliente	/qual./ u.tecn
Specifiche tecniche di v	alidazior	ne prog	etto				Cliente	/qual./ u.tecn.
Specifiche tecniche mat	teriali						Uf	f. tecnico
Verifiche sul progetto							Uff. te	cnico/qualità
Riesame sviluppo proge	etto							
		VAL	IDAZION	E PRC	GETT	0		
Gestione PROTOTIPI								Qualità
Realizzazione PROTOT	IPI						Pr	oduzione
Prove di laboratorio su l	PROTO	TIPI					Lab. P	rove / Qualità
Prove su veicolo dei Pro	ototipi						Produ	zione/Qualità
DELIBERA TECNICA (8	BENEST	ARE) p	rogetto					

DOCUMENTO UQ-12 REV.0 31/05/05 Pagina 1

LPI	R RaD	>			TEST	IS REPO	RT			
Data Codice Prodotto	18/12/2009 FF228000007-S07 OEK626 Motivazione	Ξ.	ir. Rapporto Ipo Prodotto verifica pro	03-10	Easy ki	t ementale	Copia	a:	JFF. TEC	NICO
R.E.L.E.	Nr. 30/10/2009	1	7/09		Note:]
Strumentazione u	diizzata Banco di caratterizzazione	Montago	gio su velco		nchivlazio Nr. Test	ne corpo in effettuati:	тот 9		POS 6	
	TIPO DI PROVA		s	PECIFICA		RISULTAT		SI NO	POS.	NEG
Verifica Note:	e gioco fisso su banco caratterizzazione					vedi allega	ito	x	x	
Vedi risuitati	prove									
Note: Vedi risultati	ntaggio su velcolo e prova su strada prove					vedi allega	ito	x	x	
		RISU	JLTATI	OTTENL	ITI					

Vedi risultati sperimentali

Vedi risultati sperimentali
I gradipo colstitui fogonie sporanet dimensionali dei bitera incommentale orginale. Su entrambi le ganasce sono stati eseguiti 10
Is ristozione dei sastana incomentata. La montalitata e ganatta su entrambi ligui
Le moli suttazione glei sastana incomentata. La montalitata e ganatta su entrambi ligui
Le moli suttazione glei sastana incomentata. La montalitata e ganatta su entrambi ligui
Le moli suttazione glei se di competenza e di dei possibilitato dei glei sono anno anno ano un sociliero di aggiando ta boilette e tato al angoi non amanimente per pote ca
interna di almento Samo.
In filtata di possibilitato di ligui d

Si da parere favorevole condizionato alle modifiche di cui sop

Le due biellette FF2280000D05-S05 e FF2280000D07-S07 che differiscono per l'implego o meno della lama e della TC di produzione(228) sc ambedue risultate lidonee, Si protende a considerare valida (per minori costi di sviluppo) la FF2280000D07-(

Pagina 1 di 8

SELF - SUFFICIENCY RESEARCH AND DEVELOPMENT

Raw material analysis

Chemical and material structure analysis are carried out inside Lpr Laboratories

SELF - SUFFICIENCY

RESEARCH AND DEVELOPMENT

Chemical analysis

Lpr laboratory tests

-PIACENZAJITALY	001-4552 PARTICOLARE	DEL:19/2			35	Ŀ	рг			1 48084	TORIO A	N/ 8/ 15/ N	A TERIALI			Lpr	DISEGNO:93053	ME MICROGRA BOLLA N ⁻ :93053 DEL:H 21/10/09	RELAZIONE N°: 224	Lpr
-PIACEHZA[ITALY]	FORNITORE: zml	QUAN	190	DA	35 TA: 2/2010	ROTTOFRENO.F	INCENZALITALY	Œ	pr	DISEGNO: 57642 D PARTICOLARE nastro	BOLL 22/01/20 MATE	A N'173	RELAZ 2 CERTIFI 2	ONE N': 5 CATO N': 5	Lpr	ROTTOFRENO PIACENZAJITALVJ	PARTICOLARE cilindro FORNITORE: parola e luraghi	MATERIALE gh 190 QUANTITA':	CERTIFICATO N 224 DATA: 11/12/2009	ROTTOFRENO-PIACENZAJIT
	ΔΝΔΙ	ISI QUA		TRICA				ROTTOFREHO	PIACENZAJITALYJ	FORNITORE: comal	QUAN	ITITA':	DA 16/02	TA: 72010	ROTTOFRENO-PIACENZAJITALY	2	paroia e iuragni		111212003	
SIGLA	ELEMENTI	1	2	3	4	5				ANA	LISI QU		TRICA							
-	2008 10 10	2000-00	2	3		5			SIGLA	ELEMENTI	1	2	3	4	5					
C	Carbonio	3,31							С	Carbonio	0,058									
Si	Silicio	2,33							Si	Silicio	0,023	0				MICROGRAFIA N°	:1			
Mn	Manganese	0,64							Mn	Manganese	0,32					INGRANDIMENTO	X: 200			
S	Zolfo	0,06							S	Zolfo	0,01	2			ss	ATTACCO: NITAL	404			
Р	Fosforo	0,07		0					Р	Fosforo	0,018						11			
Fe									Fe	Ferro	resto	0	8		<i></i>	ZONA DI PRELIEV DEL PROVINO: B	/0 ORDO + CUORE	(f		
_	Ferro	resto		-					Ni	Nichel										
Ni	Nichel								Cr	Cromo						Definizione grafite	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.1. H. P.)	Cantonte	alo ina
Cr	Cromo	0,09							Cu	Rame						grafite lamellare di	i tipo "I"	- baty -	- Margania	The
Cu	Rame								Sn	Stagno						e "III" dimensioni 3 distribuzione in	3-6.	G-sty.	ASSA	True
Sn	Stagno								Mo	Molibdeno						prevalenza "A".	305	destrine C	1 spint of	13
									AI	Alluminio	0.06					Non si rilevano tra	acce	ant in		Children of
Mo	Molibdeno								В	Boro						di carburi liberi.	-total	- L PP	一日の	N/C
AI	Alluminio								Pb	Piombo						Struttura perlitica.	12	ments Sal	A MARY STACK	- 21
в	Boro								Zn	Zinco								- the	A fair you	and from
Pb	Piombo								Mg	Magnesio							S A	1. and	K.S.E.E.	5
Zn	Zinco								Ti	Titanio							11	Ci Malia	for they	To Pal
_	Magnesio								Co	Cobalto							- Ja-S	themat "	E Cost.	Tarre
Mg									NOTE								trand	(-1) 1-1	had be k	
Ti	Titanio								NOTE:	ll materiale corris	ponde all	'acciaic F	E 366B		IL LABORATORIC CHIMICO		14 F.C.	Stor Fr		Sill
- Co	Cobalto															DUREZZA: HB		4		
_																DUREZZA: HB				
NOTE:	ll materi	ale è conf	orme all	a ghisa ISt	r	IL LABO	RATORIC									HB: 205 - 210 - 21	12 - 215 - 218			
							NICO													
+						Sergio	Paradisi									NOTE:	ll materi.	ale è conforme alla	GHISA ISO	
																				Crimicu

SELF - SUFFICIENCY

RESEARCH AND DEVELOPMENT

Supplier certificate

Lpr requires its suppliers to forward a quality certificate for all the batches delivered.

	lustries S.p ON DIVISI			D CONFORMITY TIFICATE	ZML LAB-F-03138.A						
ZML Co	de:		1123733	Production:	~						
Drawin	g:	CI	LINDRO (014552(484)	Sampling:							
Custom	er:		1.PR 5.R.L.	Preserie:							
inter/Pro	date:		17,02;	2010 Quantity:	30233						
Moulding	line:		DISA 2	Delli	very notes	0.75					
Materia	als:		GH 190		Da	te:					
Ref.Nor	m:		FIAT 52205								
H	ARDNESS	[HB]	TENSILE STRENGT [N/nam2]	" x + 15-7	(Art	329 N.73					
Specificatio	mt	179-230	189 N mm2		. 1°a						
Preduction	u Min 224	Max Internal 229 222	247 N/mm2	A A		11/2					
	МІ	CROSTRUCT	URE	11-343		- AL					
		Reneture/Matr	ly.	States V	and a	Co San F.P.					
Pe	fik:	100	95	State of	U.S.	A Barr					
				10 X - 1, 1, 10 - 10 - 4 - 11 - 10 - 10 - 10 - 10 -	N/sk 2% 200	C MO S PC (BORDER)					
Fo	vitic	0	%								
	s	PECTROMET ANALYSIS	ER								
C:	3,30	Mo:	0.009	_							
SE	2,39	Mg:	0.002								
Mnt	0.67	Ti:	0,019								
P:	0,076	Sn:	0.048								
St	0,069	Pb:	0,001								
Cu:	0,144	Zn:	0,003								
Cr	0,076	C.E	4.20								
Al	0.003		Laure d'annual								
Ni:	0,058	S C:	0,99	1							
		-	NO	TES:		1					
Ð	376	E PURCHASM PORMATION RI INSPI	CLARE THAT THE PRO G ORDER, DRAWINGS LATED TO THE CARR SOTION, THIS DOCUME	ONFORMITY DECLARATION, DUICT HAS BEEN PRODUCE AND OTHER SPECTROTION IED CUT CONTROLS ARE AV NT IS ACCURDING TO UNITE TO 1 EU 2000 50 - EU 2002	D IN CONF V AS ABOV WILABLE W 10204 (3.	E REQUESTED. OH ANY EVENTUAL 1.8)					
RE	FERENCE	Nr I	DATE OF ISSUED	ISSUED BY		PPROVED BY					
	168 2010		17/02/2010	Mauro IOB	Rei	erte ROSSETTO					

LPR 5 octotto adano Num 14D Lung 0,00 Num 0,00 Num	Peso Kg 0,0200 Spcss 4,00 0,0580 Sperz	318, Mn 0,3260	\$/ 0,007 200	DDT n. N 173 n 0,0136 <i>Pen Herroz</i>	Qualit gE360 3 0,0146	Nu S		Norm EN10	025	0
edano Mum MD Luxoz 0,00 Mum D Luxoz 0,00	Peso Kg 9,0200 50535 4,00 0,0580 3,0680 3,0642 3,00	0,2720 Rp /s 316, Mn 0,3260	\$/ 0,007 200	N 173 ,n 0 0,0136 / Ru Maro 2	S	28	Scheda di	EN10	025	
Num 4D 1,000 0,00 Num D 1,000 0,00	C 0,0200 Spras: 4,00 C 0,0580 Spraz 3,00	0,2720 Rp /s 316, Mn 0,3260	\$/ 0,007 200	N 173 ,n 0 0,0136 / Ru Maro 2	3		Scheda di			
Num 4D 1,000 0,00 Num D 1,000 0,00	C 0,0200 Spras: 4,00 C 0,0580 Spraz 3,00	0,2720 Rp /s 316, Mn 0,3260	\$/ 0,007 200	N 173 ,n 0 0,0136 / Ru Maro 2		4	Scredd dr	INVERSION	e easte	
4D 6,60 6,00 70m 10m 6,00	0,0200 Spras 4,00 0,0580 Spras 3,00	0,2720 Rp /s 316, Mn 0,3260	0,037 Marc2 200	0 0,0136 Peo Nono2		Li				
Lung. 9,00 hum. D Lung. 9,00	Speas 4,00 0 0,0580 3(M42) 3,00	Rp /s 318, Mn 0,3260	200	Per NorroZ	0,0146		Almer	615	T	v
0,00 Num D Tump 0,00	4,00 0,0580 30632 3,00	318, Mn 0,3260	200			0.0401	0,0000	0,0012	0,0010	0.002
Num. D Long. 0,00	0 0,0580 30632 3,00	,Mn 0,3260	410,4941		AN	(IRB	6L 8007	1	_	
hum D Long 0,00	0 0,0580 30632 3,00	0,3260		356,900	32,800	0,000	0,000	Constanting		1.04/10/00
D Long 0,00	30632 3,00		51	p	5	Fa	Nmax	Alb.	TI	V
0,00	3,00				0,0125	0.0532	0,0000	0,0054	0.0010	0,004
and the second				Rei Miner2	A%	HIRB	/E mm	2		
		360,	700	398,900	26,000	0,000	0,000			_
	C	Mo	SI	ŗ.	S	Ai	Aleren	.145	Ti	V
DeD	3,0440	0,3080			0.0160	0.0000	0,0000	0,000C	0,0000	0.000
Lung.				Not Wanted	A%	HIRB	IE ma			
0.00	2.00	283.0	000	391.000	33.000	0.000	0.000		-	-
	'ornitura e' c	onforme	ell'ord	inato.		-	-		-	
ie la foi							II colland	htore		-
	lat	la fornitura e' c	la fornitura e' conforme	la fornitura e' conforme all'ord	la fornicura e' conforme ell'ordinato.	la Tornikura e' conforme all'ordinato.	In Tornikura e' conforme ell'ordinato		In formitura e' conforme all'ordinato. Il colfuentione	

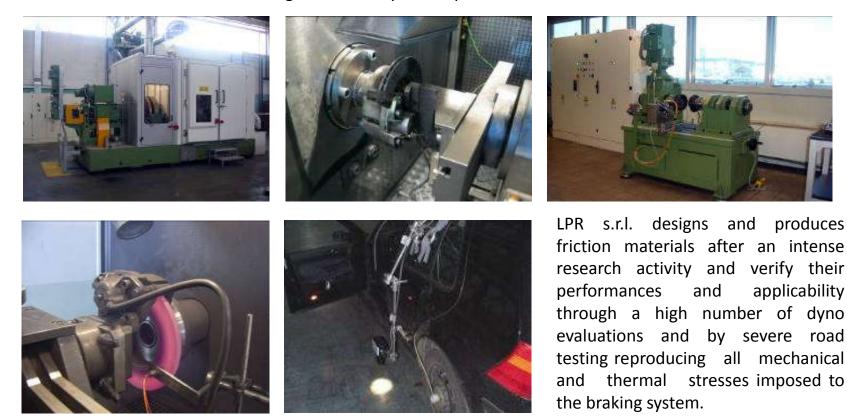
seal's syst	em					M0902	.4	Rev. 00 de	116.04	96	Pag. 1	
i can e eyon											Allegat	14
				Т	EST R	EPOR	r			D	ATA	
		Mes	cola	LTX	72 (tx	120/70	D)				/09.09	
			CAN	770	ZIONE	PROV	FTT	F				
PLACCHE	DA 2 mm							-			°C.	
Tomboli da												
	apitolato F				Metodo o		R	chiesto	R	levato	Un	ita di
							Requ	uirements	T	ested		sura
Durezza	Hardne			_	ASTM D				_			DREA
Durezza	Hardne			\rightarrow	ASTM D			38-74	+	71		RHD
Dessita	· ·	: Gravity			ASTM D				1	,203		(cm ³
Carleo di rottura	_	Steigti			ASTM D			> 10	+	15		² (MPa)
Allungamento a rottura		e Elongation		_	ASTM D		20	00 min	+	380		¥.
Lacerazione		es is te no e			ASTM D				_		N/ma	n (MPa)
Resa e lastica	(Palint	alome tro)			ISO 4				_			1
Ceneri	_			_	ASTM				_			¥.
Abrasione		n Resistanc		_	ASTM [_			¥.
02010		nce to .	ŋ	_	ASTM [_			
Prova al freddo	Low Te	mperature b	rature brittleness			D 746		-40	-	0k*		•C
Hdickange	_						D+25		_	+21		
Prova al freddo	TR TE		-	_	ASTM D				_		"C	
Compression Set	70 I.a.	12010, def 2	5%	_	ASTM D	395 B				21	۴.	
Compression Set				2)								8
	V	ARIAZI	ONE	DEL								
Ambiente	Tempo	Temper.	Du	irezza		inco a ttura		ung.a ttura	Volu	ume %	Pe	so %
, constence	Ure	°C	Req.	leste		lested		lested	Req.	lested	Req.	lested
DOT 3 FIAT	70	120	-15	-9	-40	-15	-40	-19	0+20	+2,5		
Aria	70	120	-6+10	+8	-30	-12	-30	-12				
N	I						-		I			
Note:" bend to 180° Particolari : 200-16	32 207	-1662 :	200-43	361								
l da tipresentatison o o te che glistessiris i tati							Firm	a : Lanci	-: 016			

SELF - SUFFICIENCY RESEARCH AND DEVELOPMENT

Tests

Before being released, new products need to pass all the tests

- OE reference performances
- Lpr prototype performances
- Endurance test
- Burst test


SELF - SUFFICIENCY PRODUCTION AND ASSEMBLY

All production steps are made inside our own plant.

SELF - SUFFICIENCY LABORATORY AND ROAD TESTS

Lpr is committed to the highest quality and observes important International standards such as ISO 9001:2008 and ISO TS 16949:2009. All that thanks to our quality control department which is equipped with the most advanced technologies and a very skilled personnel.

SELF - SUFFICIENCY LABORATORY AND ROAD TESTS www.lpr.it ---

All production steps take place inside our own plant.

FLEXIBILITY AND AVAILABILITY WAREHOUSING

The fully automated warehouse contains 40,000 bins, what means around 15,000,000 parts.

These two types of warehouses allow Lpr to pick and pack high and low volumes orders in a very short time.

Vertical warehouses around 60 fully automated and very fast. These are mainly used to prepare slow moving parts.

LPR PRODUCTS DATA TECDOC INFORMATION SYSTEM

The information source for the vehicle repair market with the original data of the parts manufacturers.

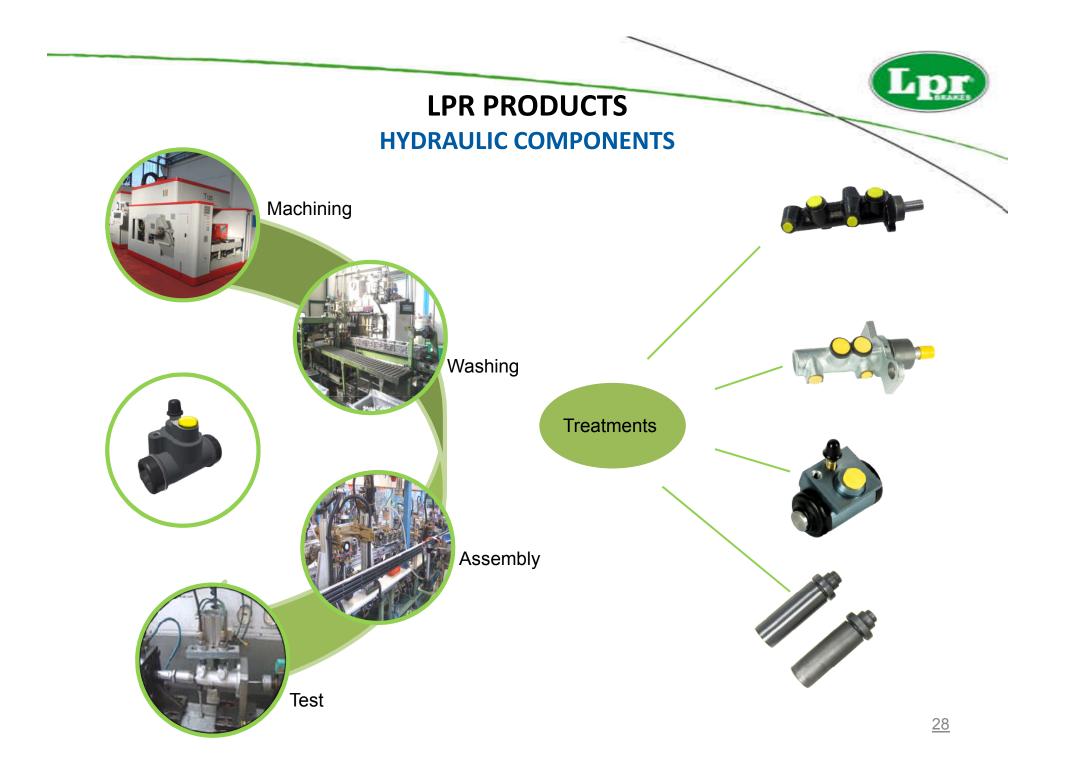
TecDoc Informations System GmbH has established itself as the leading supplier of electronic spare parts information on the European market.

TecDoc furnishes the free vehicle spare parts market with current and comprehensive data for identifying and ordering parts – for both, PC as well as CV – directly from the databases of the cooperating automotive aftermarket manufacturers in a standardized catalogue form.

The core tasks of TecDoc are still the standardizing, gathering and distributing of data as well as the development of the necessary data techniques. Nevertheless, TecDoc intensively works on new projects in order to offer more efficient solutions to industry, trade and garages.

TecCom is the leading B2B platform in the international automotive aftermarket.

Use of TecCom simplifies and automates business processes between LPR and wholesale traders.


- ✓ 2891 Brake and Clutch Hydraulics
- ✓ 1882 Brake and Clutch Hoses
- ✓ 96% Car parc coverage

LPR PRODUCTS HYDRAULIC

Production capacity exceeds 100,000 finished units per day. Components production is within Lpr facilities, including pistons, push rods, screws washers and rubber and plastic parts. During development and production processes the raw material and finished products are subjected to strict controls such as:

- ✓ Raw material analysis
- ✓ Prototype performances against OE
- ✓ Endurance test
- ✓ Burst test

HYDRAULIC PRODUCTION AND TESTES

Assembly

Performance (OE & LPR)

Endurance Test

Production capacity exceeds 100,000 finished units per day. Components production is within LPR facilities, including all piston, rubbers and plastics. Range encompasses cast iron and aluminum with case hardened pistons as necessary.

All zinc plating is processed on site with state-of-the-art process. Assembly of washed and oiled parts is carried out using LPR selfdesigned and built equipment with many tasks being fully automated. All parts are subject to pressure testing before their release to warehouse.

PRODUCTION Hydraulic

All machining operations are carried out on highly sophisticated numerically-controlled machinery. All machinery has been specially conceived, designed and developed by a team of skilled personnel

ASSEMBLY & QUALITY CONTROL Hydraulic

Assembly is carried out with highest precision, whilst maintaining the flexibility required to meet the specification required by international standards.

All parts are subject to pressure testing before release to warehouse.

ASSEMBLY & QUALITY CONTROL Hydraulic

In order to meet market requirements Lpr kept investing in new technology and introduced fully automated machines for the assembly and quality control of fast moving cylinders.

PROTECTIVE COATING Hydraulic

Lpr has also made significant investment in plant for heat treatment, zinc plating and burnishing. All plant operates with respect for safeguarding the environment.

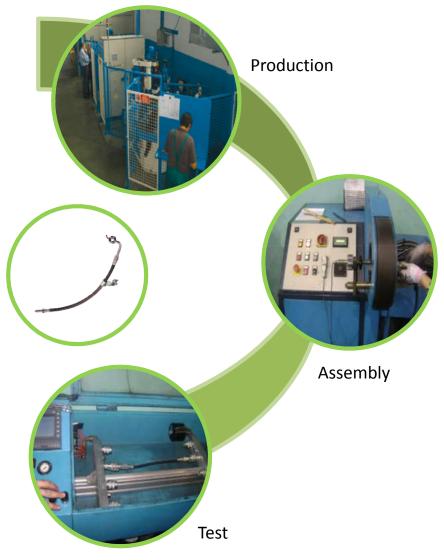
LPR PRODUCTS BRAKE & CLUTCH HOSES

Range: 1882 Brake & Clutch hoses

Coverage: 96% European car parc

All Lpr hoses are manufactured and tested according to SAE J1401 International standard.

Lpr uses Semperit hose and manufactures the end fittings.


All of them are zinc plated to protect them against rust.

- Tube: SBR/BR, black smooth
- Reinforcement: Textile braided
- **Cover**: EPDM, black, grooved, oil and ozone resistant
- **Marking**: Continuous coloured marking, white: Semperit DOT1/8HL SAEJ1401. Additionally white longitudinal stripe.

LPR PRODUCTS BRAKE & CLUTCH HOSES

All the hoses manufactured by Lpr are subjected to several tests such as:

- ✓ Hydraulic test
- ✓ Burst test
- ✓ Tensile strength
- \checkmark Constriction test

Once per year Lpr performs all the tests required by SAE J1401 to ensure 100% quality and safety.

BRAKE & CLUTCH HOSES PRODUCTION

Production

Assembly

Key Features:

- ✓ Zinc plated steel end fittings to provide corrosion resistance
- ✓ High thermal, chemical and humidity resistance

All production steps are made inside LPR plant.

BRAKE & CLUTCH HOSES PRODUCTION

BRAKE & CLUTCH HOSES TESTS

- PRESSURE TEST
- CONSTRICTION TEST
- VOLUMETRIC EXPANSION TEST

manometer at P=69bar for the first 3 steps

manometer at P=103bar for the second 3 steps

pressure at P=200bar

tools used

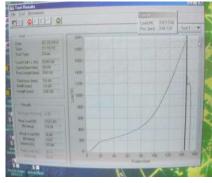
- BURST STRENGTH TEST

P=280bar constant for 2 minutes and pressure arousal until burst occurs

LPR sample burst

BRAKE & CLUTCH HOSES TESTS

- BRAKE FLUID COMPATIBILITY
- WHIP TEST
- TENSILE TEST



sample ready for the test

- COLD BEND TEST

Start Test

test report diagram

Start TT Set 1

samples after testing

Start TT Set 2

BRAKE & CLUTCH HOSES PRODUCTION

- OZONE TEST

Ozone test condition:

- 100 Mpa for 72 hours at 40°C
- Hose on a cylinder 8 time the nominal outside of brake hose
- Hose on cylinder 24hr before test begin

-SALT SPRAY

- WATER ABSORPTION TEST
- HOT IMPULSE TEST
- DYNAMIC OZONE TEST
- BURST TEST:

Ozone machine

Chamber temperature

Pressure of samples during cycle phase

Hoses connected to the circuit

BRAKE & CLUTCH HOSES CERTIFICATE

mbled ho

INSTITUTE FOR TESTING AND CERTIFICATION, a. s.

SAE J1401

Zlin, Czech Republic

No. 11 0914 V/ITC

ALC: NOT STREET

We certify hereby that the product Rubber hoses assembly for hydraulic brakes of automobiles,

DN 3,2, type : FBH

issued for applicant

Semperflex Optimit, s. r. o. Vitkovská 391/29, 742 35 Odry, Czech Republic NIP: C226425173

manufacturer by

Semperflex Optimit, s. r. o. Vitkovská 391/29, 742 35 Odry, Czech Republic

conforms to requirements of the document:

SAE J1401:2003 - Road Vehicle-Hydraulic Brake. Hose Assemblies for Use With Nonpetroleum-Base Hydraulic Fluids.

The Certificate has been asued on the basis of the following certification document: Final Report No. 311500364/2011

Institute for testing and certification, z. s., confirms that the product producer has created all the conditions needed to keep the product properties during the production process.

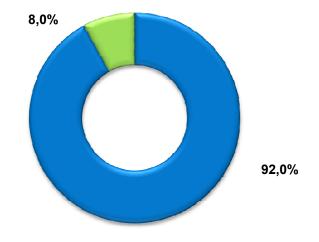
> RNDr. Radomir Čevelik general director

Approved and issued : 19/10/2011 Valid until : 31/10/2014

-					
	100% pressure test by 20,7-24,8MPa/10-25sec			No leakage	OK
	Constriction test /mm/			min.2,03	ОК
	Volumetric expansion test		69Bar 103Bar 200 Bar	max.1,08cm ³ /m max.1,38cm ³ /m max.2,00cm ³ /m	0,5 0,7 1,5
	Burst pressure /Bar/ (276Bar/120 sec, then bursting)			min.700 (490 acc.SAE)	890
	Brake fluid compatibility (120°C,72hours)		Constriction test /mm/	min.2,03	OK
			Burst pressure	276Bar/120sec+m B.P. min.345Bar	>600
	Whip test (800RPM)			min.35 hours	>70
the second se	Tensile test (25mm/min) /N/			min. 1446	2200
			r/120sec+mB.P. 5Bar)	min.490Bar	750
	test Ter 85°C/72h	Tensile	test (25mm/min)	min.1446N	2050
		Whip test (800RPM)		min.35 hours	>50
	Salt spray test			no corrosion	-
	Hot impulse test (11MPa/1min 150x, 146°C) + Burst pressure test			276Bar/120sec + min.345Bar	-

All LPR brake discs comply with the international certificates of safety.

- ✓ 1618 Brake Discs
- ✓ 483 Brake Drums
- ✓ 94% Car parc coverage


PRODUCT DEVELOPMENT COVERAGE DISCS CATALOGUE

Lpr Discs catalogue contains over 1.300 disc references, plus further 300 references of coated discs for the main applications.

The coverage is 94% of the european car-pac and 92% of the asiatic/emea car-parc.

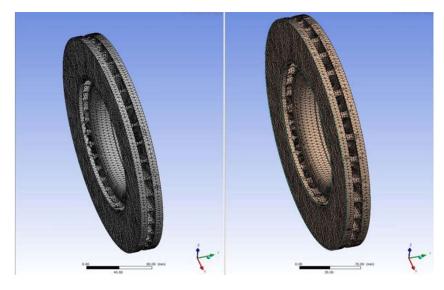
Coverage EU Car-parc

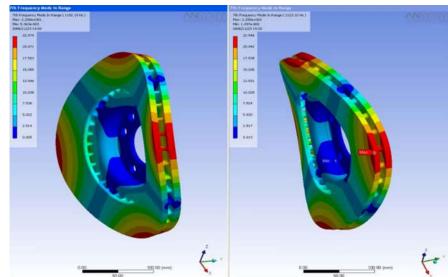
Coverage Asiatic Car-parc

Balancing of ventilated brake discs

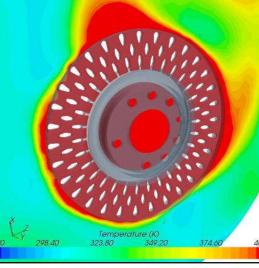
100% Quality Control

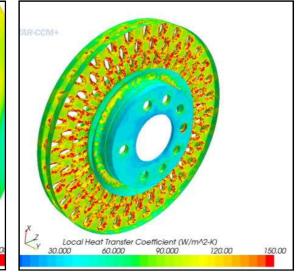
Dyno Bench




Laboratory Testing

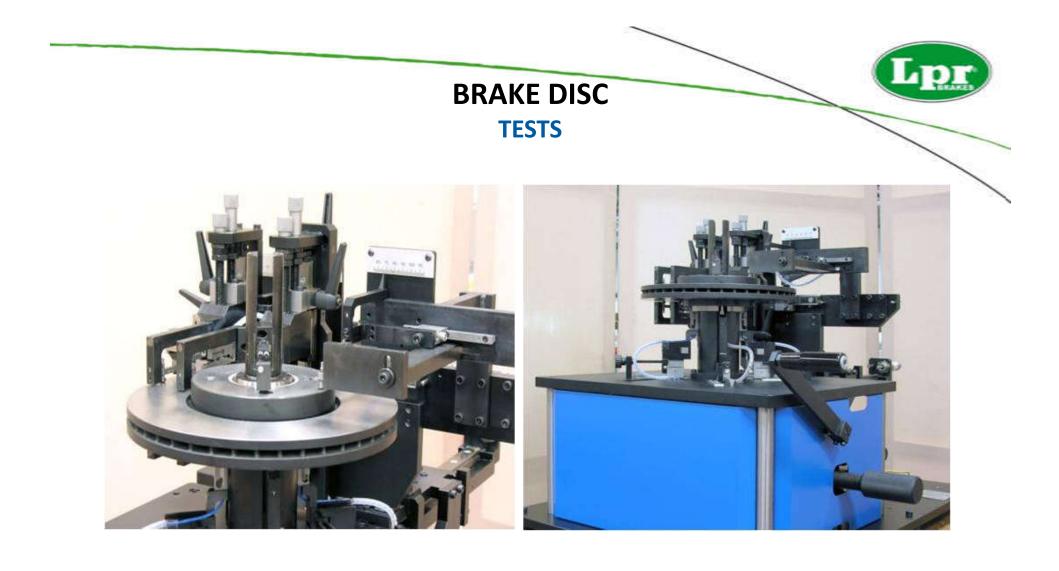
BRAKE DISC RESEARCH & DEVELOPMENT


FEM

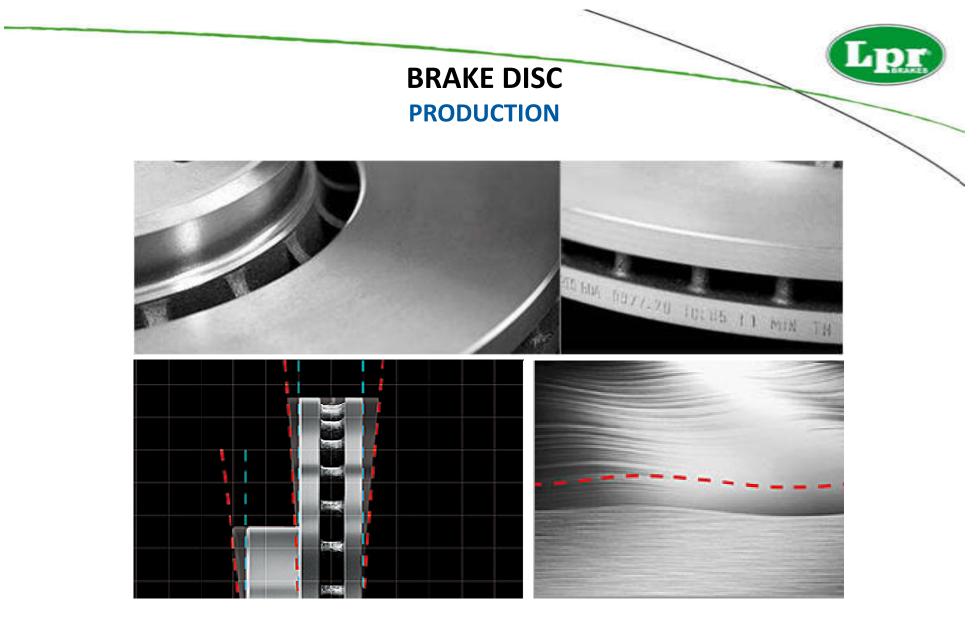

MODEL ANALISYS

BRAKE DISC RESEARCH & DEVELOPMENT THERMAL SIMULATION

FLUID ANALYSIS

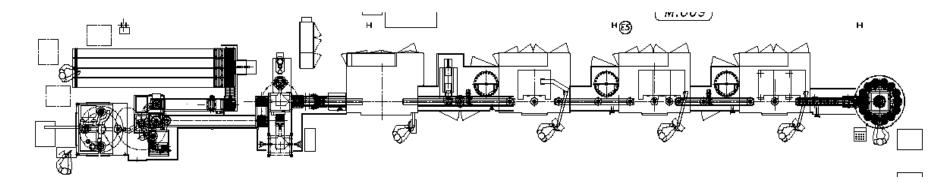


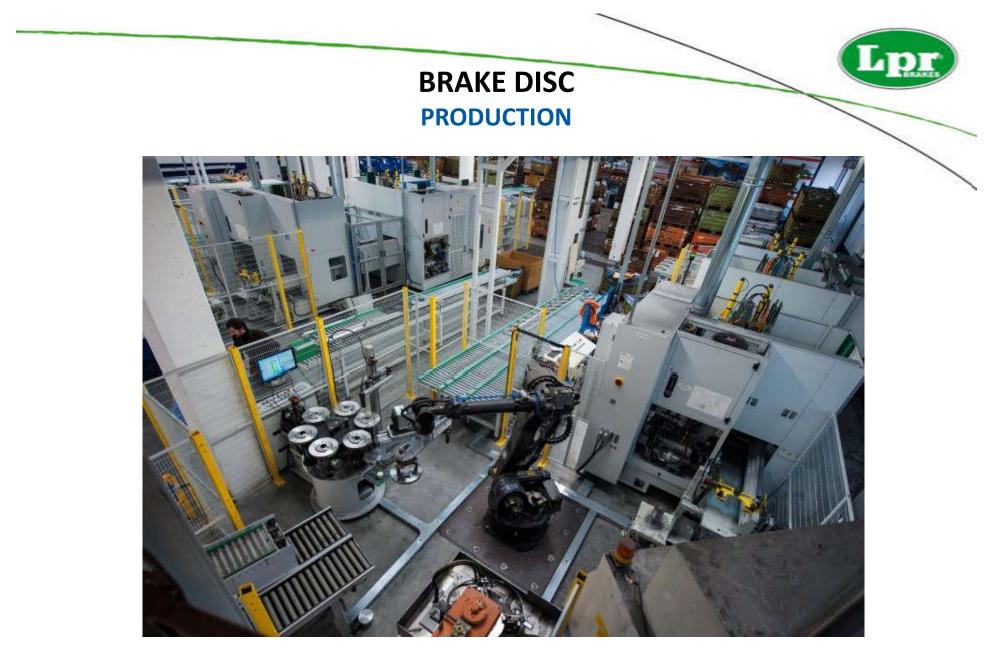
LPR PRODUCTS BRAKE DISCS AND BRAKE DRUMS

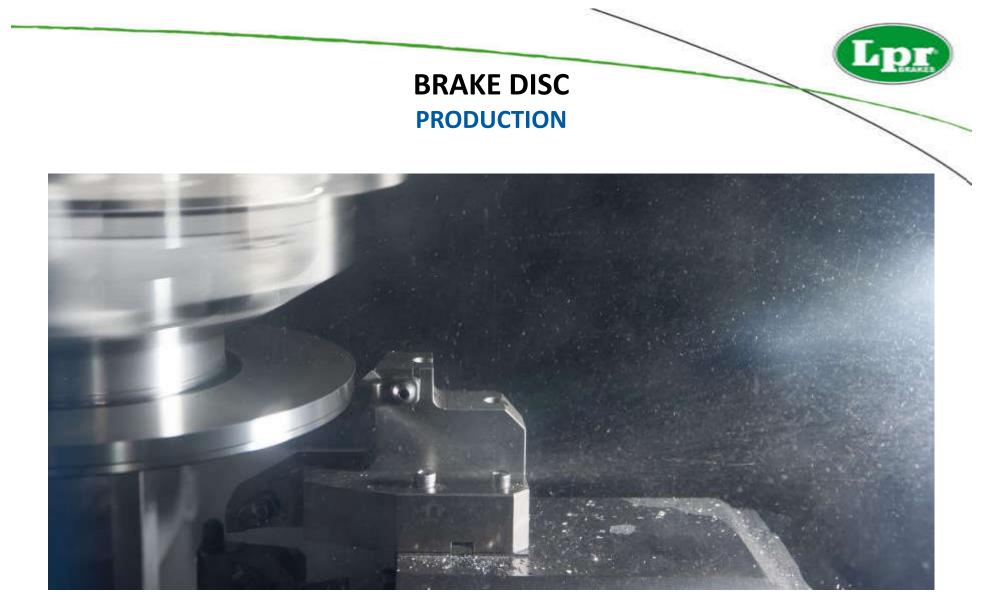


- ✓ Alutherm
- ✓ Geomet (upon customer request)

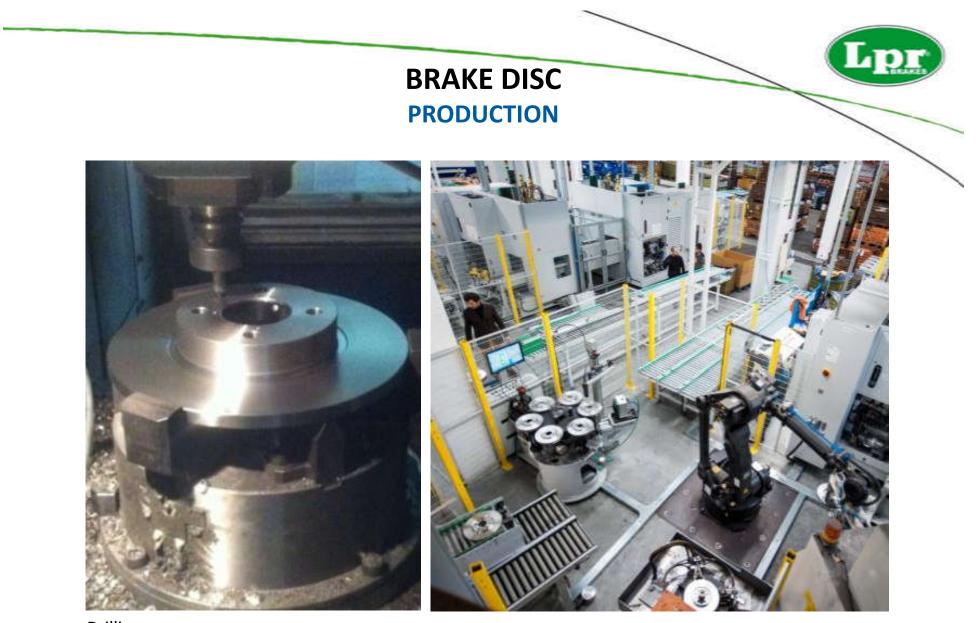
Dimensional and geometrical tolerances checks – run out - DTV

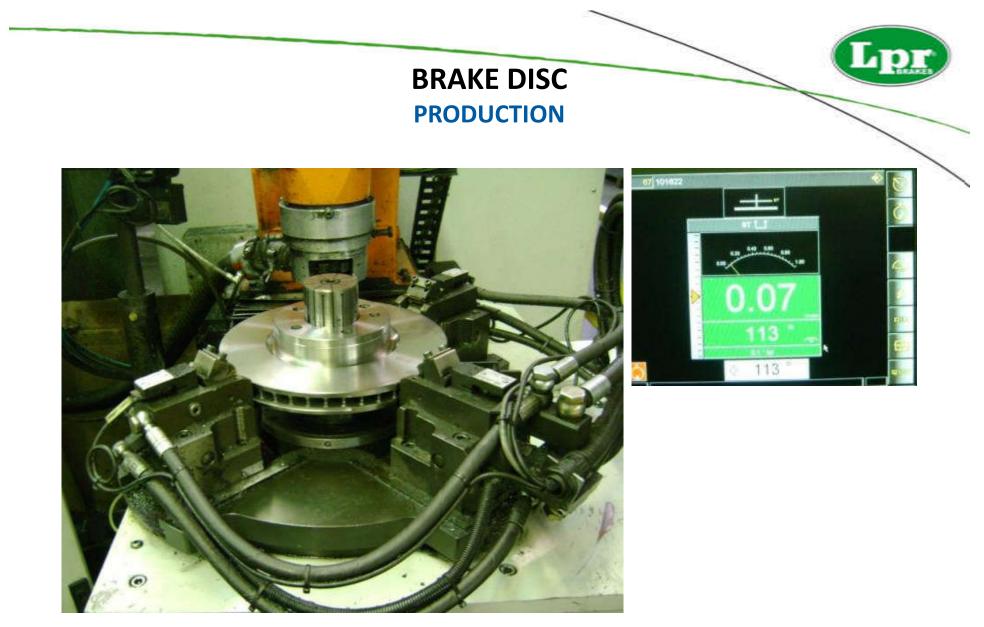

Surface finishing-marking-run out-DTV

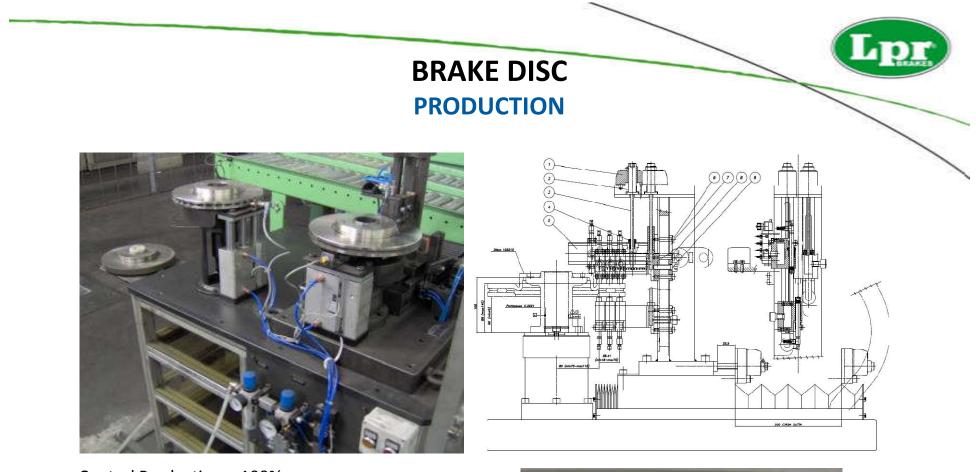

BRAKE DISC PRODUCTION



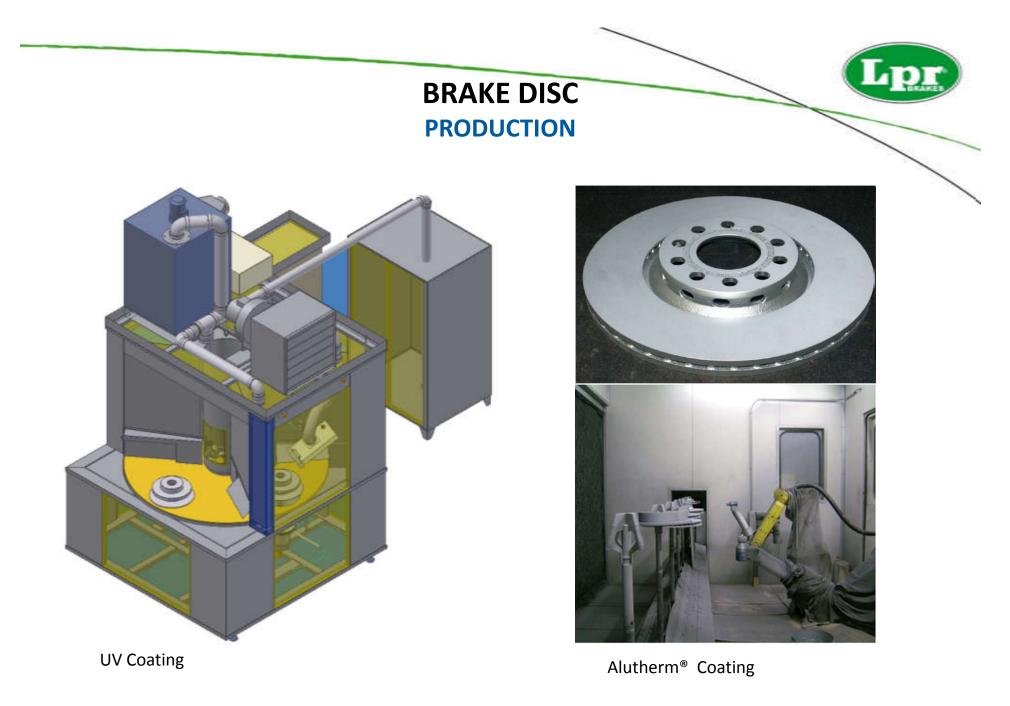
- turning steps machining
- drilling
- balancing
- marking
- painting
- 100% test by gauge




CNC Machining


Turning

Drilling



Balancing

Control Production – 100% on

In 1996 LPR expanded it's manufacturing base, with investment into friction technologies to provide customers with a range of friction products.

- ✓ 1727 Brake Pads
- ✓ 96% Car parc coverage

Since the beginning of 2012 LPR has been producing brake pads with multi-layer shims (Rubber-Steel-Rubber). This minimizes the noise and grant a better comfort. Anti-noise shims are produced in a high quality damping material to grant insulation, compressibility, and cold noise damping ability.

The backing plates can have different anti-noise systems:

- ✓ Rubber coating
- ✓ Metal shim: metal part made of harmonic iron.
- ✓ Multilayer shim: with lowering levels of rubber on both sides.

New generation articles with processes of positive molding and under-layer, high resistance to shear test, scorching and OES accessories version for most part of the production range, including the application of shims so as to improve the operational comfort of the final product.

LPR PRODUCTS

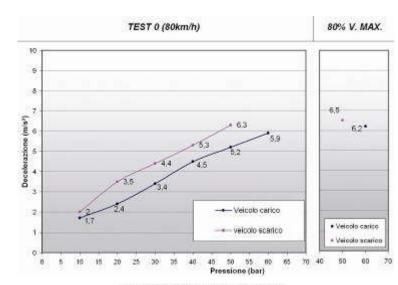
MAIN MATERIAL CONTROLS:

OES:

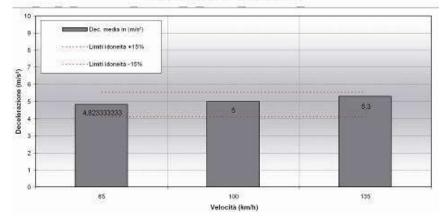
- Test Krauss on every mix batch, for batch validation
- Density after molding
- Hardness after molding
- Shear test with specific requirements for each item defined in PPAP
- Bonding > 90%
- Dimensional control on critical dimensions, as defined in PPAP, in SPC (10 pcs)
- Defects Catalogue in agreement with Customer and defined in PPAP.
- Ping Test (hammer sound analysis for internal cracks checking)
- Paint thickness control (15 ÷ 40 µm)
- Cross-cut test (ISO 2409)
- Paint hardness (ISO 15184)
- Compressibility for each batch supplied

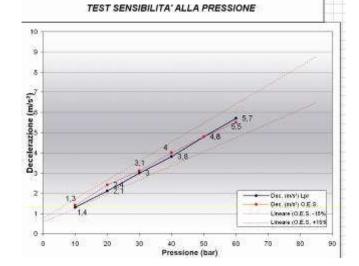
MAIN MATERIAL CONTROLS:

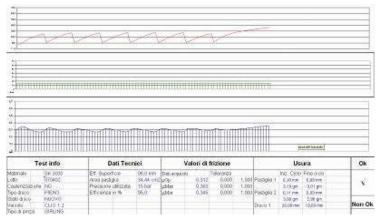
AM:

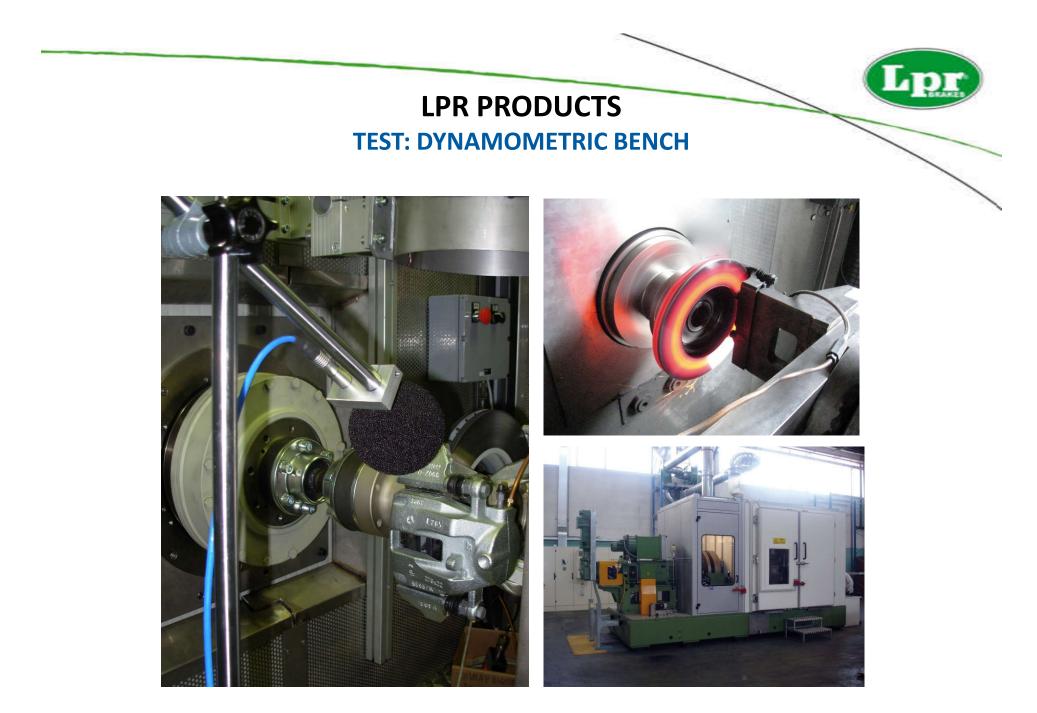

- Test Krauss on every mix batch, for batch validation
- Density after molding
- Hardness after molding
- Shear test with same requirement for every items
- Bonding > 70%
- FEMFM Defects Catalogue for final visual check
- Paint thickness control (12 ÷ 50 µm)
- Dimensional control on maximal dimensions
- Compressibility one per year for each homologated item for CoP

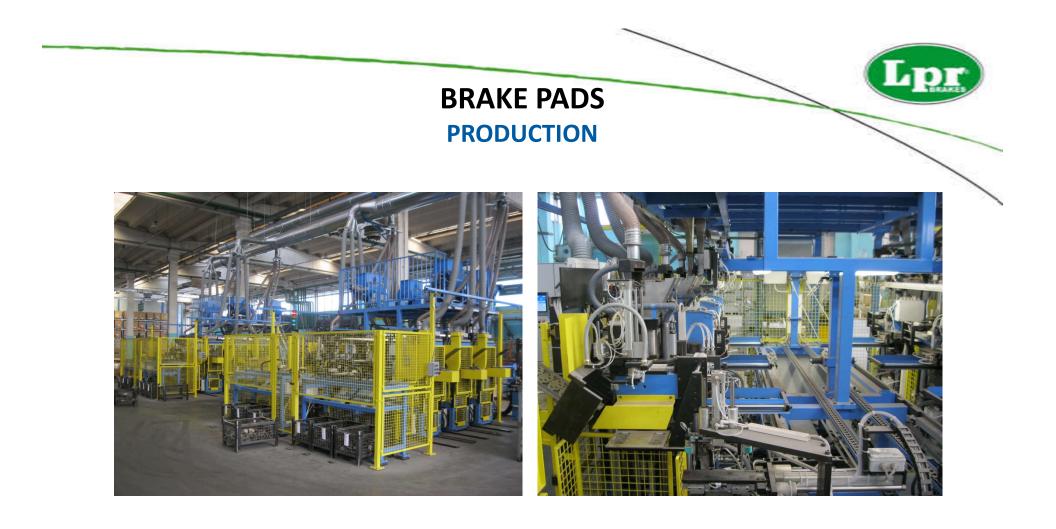
LPR PRODUCTS HOMOLOGATION ECE-R90

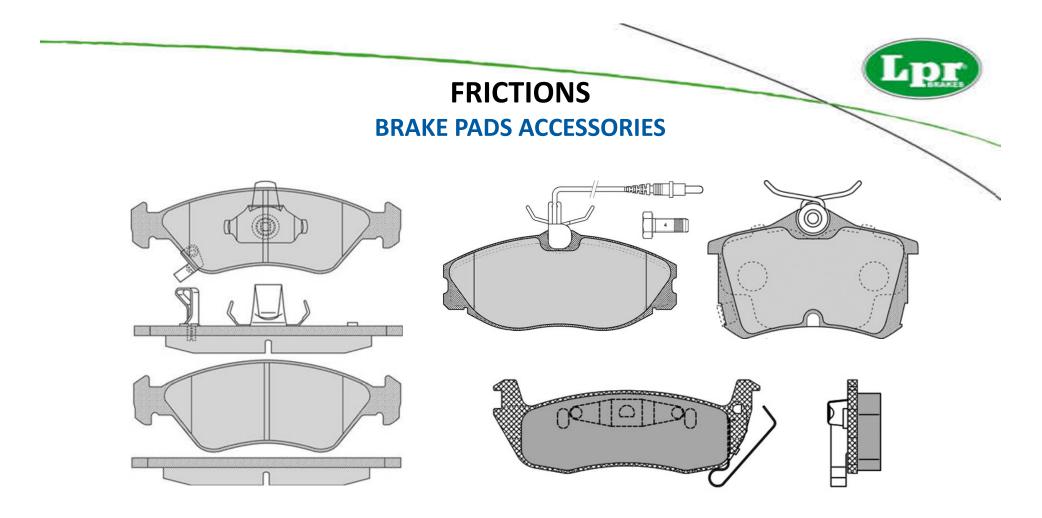



Tests for ECE-R90 homologation are carried out internally with TUV supervision


LPR PRODUCTS HOMOLOGATION ECE-R90


TEST SENSISIBILITA' ALLA VELOCITA'





62



All the elements of the development and manufacturing process are 'in house', in order to completely control the quality and the supply. This process starts with the formulation of the friction material and the stamping of the back plates right through to Krauss and Dynamometer testing and on vehicle proving, and inclusion into LPR's ECE R90 Program when necessary. Supply to OE brand customers started in 2002.

- 1. Piston clips
- 2. Acoustic and electric wear indicators
- 3. Caliper slider shims
- 4. Chamfers to avoid noise
- 5. Slot to get rid of dust

The pictures show different springs. The type of spring depends on caliper design.

FRICTIONS BRAKE PADS PRODUCTION (MOULDING)

Automatic Hot moulding (Gaudeni)

Leinweber automatic moulding

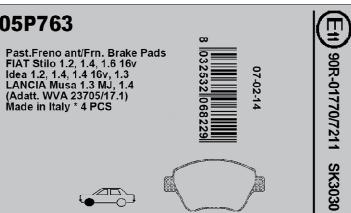
Cold Moulding

FRICTIONS BRAKE PADS PRODUCTION (GRINDING)

Specific for pads with chamfers

FRICTIONS

BRAKE PADS PRODUCTION (COATING & ACCESSORIES ASSEMBLY)



FRICTIONS BRAKE PADS PRODUCTION

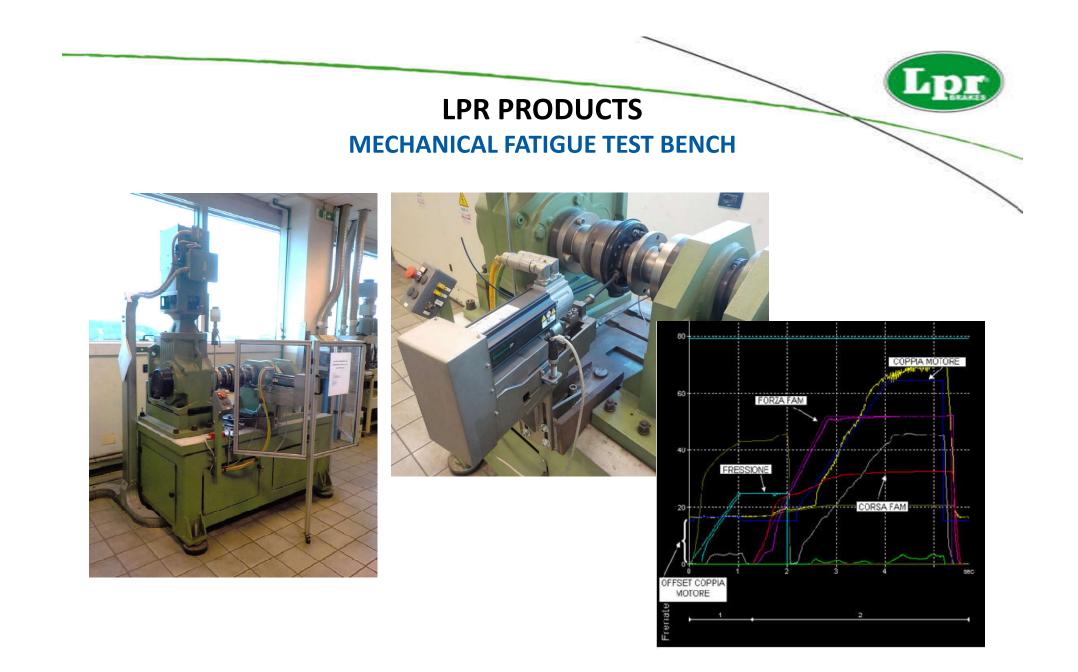
requirements

Thanks to a new commercial agreement LPR has become the new RENAULT OES supplier for preassembled brake shoe kits, brake shoes and brake wheel cylinders demonstrating again its products quality and reliability. RENAULT products are marked with LPR brand on brake wheel cylinders.

- ✓ 666 Brake Shoes
- ✓ 517 Not pre-assembled brake shoes kits
- ✓ 293 Pre-assembled brake shoes kits
- ✓ 95,5% Car parc coverage

LPR PRODUCTS BRAKE SHOES

Brake shoes production



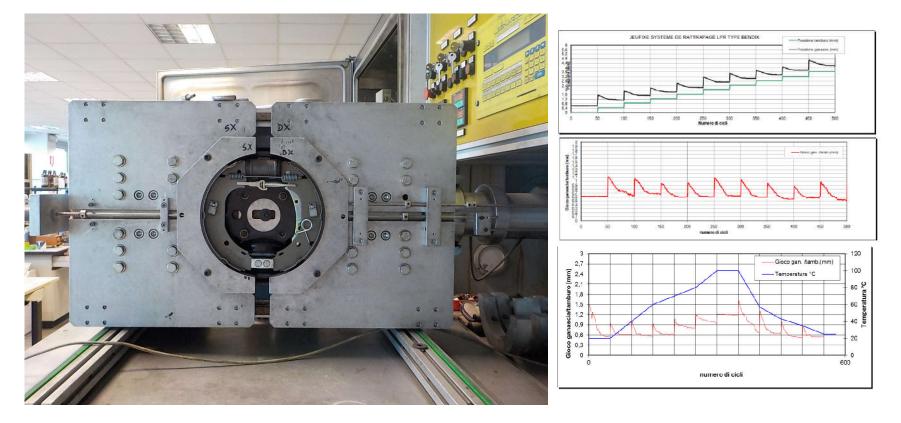
Brake shoes kits assembling

<u>75</u>

LPR PRODUCTS BRAKE SHOES & EASY KIT

SHEAR STRENGTH AS PER OE REQUIREMENT

SHEAR STRENGTH AS PER AM REQUIREMENT


LPR PRODUCTS CLIMATIC CHAMBERS

10

LPR PRODUCTS **SALT SPRAY CHAMBERS** 100 Ø TROP • A=

LPR PRODUCTS BRAKE SHOES & KITS

Range: 666 shoes and 293 kits Coverage: 95,5% European car parc

- ✓ Lpr brake shoes are ECE R90 approved where applicable
- The kit includes brake shoes, adjusting devices, wheel cylinders, grease, fitting instructions and cap and nut where applicable;
- ✓ The adjusting device fitted is the same as the OE
- ✓ All the components are manufactured in house
- \checkmark It is 100% end of line tested
- ✓ Lining: flexible and rigid linings

Benefits of pre-assembled kit

- ✓ You save up to 50% repair time
- ✓ You need to order one article only
- ✓ You avoid improper fitting
- ✓ You always use a new adjusting device

LPR PRODUCTS **BRAKE SHOES & KITS** Blankin elding Blanking ⇒ Welding Sand Sandblasting Blasting Marking ⇒ Coating ⇒ Curing Accessories assembly Marking Coating Curing

Thanks to a new commercial agreement LPR has become the new RENAULT OES supplier for preassembled brake shoe kits, brake shoes and brake wheel cylinders demonstrating again its products quality and reliability. Renault products are marked with LPR brand on brake wheel cylinders.

FRICTION R90 APPROVAL All Lpr products are ECE R90 approved (where applicable)

Lpr approval authorities are VCA (E11), KBA (E1) and IDIADA (E9)

Vitre Langua faith Vitre Langua faith ann Langua faith Ultre Langua faith Ultre Langua Langua faith Ultre Langua Langua faith Ultre Langua Langua faith Ultre Langua Langua faith Ultre Langua	Kraftfahrt-Bundesamt	TANDA AND DISTRIBUTION
The carties encoded ublock attrices, authority Image: Image and attrices Image: Image and attrices	ETTERNG sequences SetUpter tame SetUpter tames SetUpter	Egg Notation Margin Margin
LPA 5-1 State Reamo 37 2003 Apparatum P Persona	Nummer for Developing #1808555 Execution Size	Kunder, elseythe del Verlagent ' Mangle Lever 's seas and addres The del Verlagent Mangle Lever 's seas and addres The del Verlagent Mangle The del Verlagent Mangle The del Verlagent Mangle
Net Note and type of brains imag assentity: 599780 Note and type of brains imag 1 Total Additional Assentiation (Control Additional Assentiation) Control Additional Assentiation (Control Additional Assentiation) Operand Control Additional Assentiation (Control Additional Addition	Austral (c) is the add that is the systematic Austral (c) is the intervention of addition Austral (c) is the i	Marci op Africansk Afrikansk Af
Jahudar Brandt		

FRICTION R90 APPROVAL

CoP: Conformity of production is continuously secured through a testing process as per ECE R90 requirements.

- ✓ Friction coefficient (Krauss test)
- ✓ Hardness
- ✓ Shear strength
- ✓ Compressibility

FRICTION TESTS

DYNAMOMETRIC BENCH TEST

- ✓ Max inertia 200 Kmg2. The bench can test the braking systems of M1 N1 vehicles
- ✓ Max speed: 300 km/h
- ✓ Acquisition of 5 different temperature channels
- Possibility of performing tests at constant pressure, constant torque and constant deceleration (useful to check wear)
- ✓ Sophisticated and advanced software to check noise

MECHANICAL FATIGUE BENCH

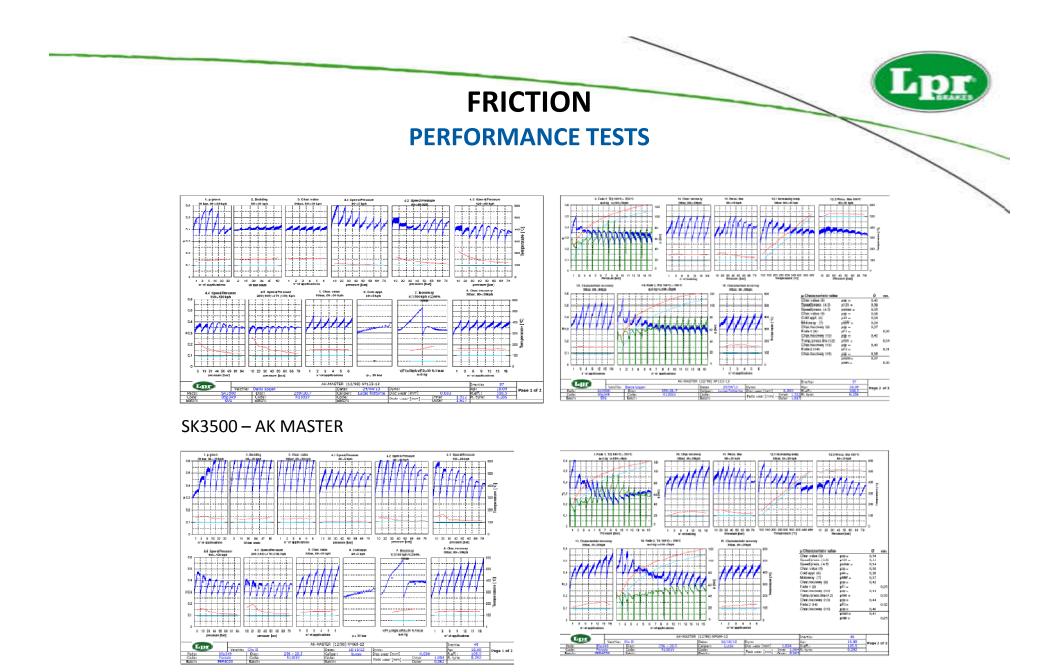
This bench allow us to study and we improved the hand brake function.

We can test the handbrake simulating different slopes (usually 20% or 30%)

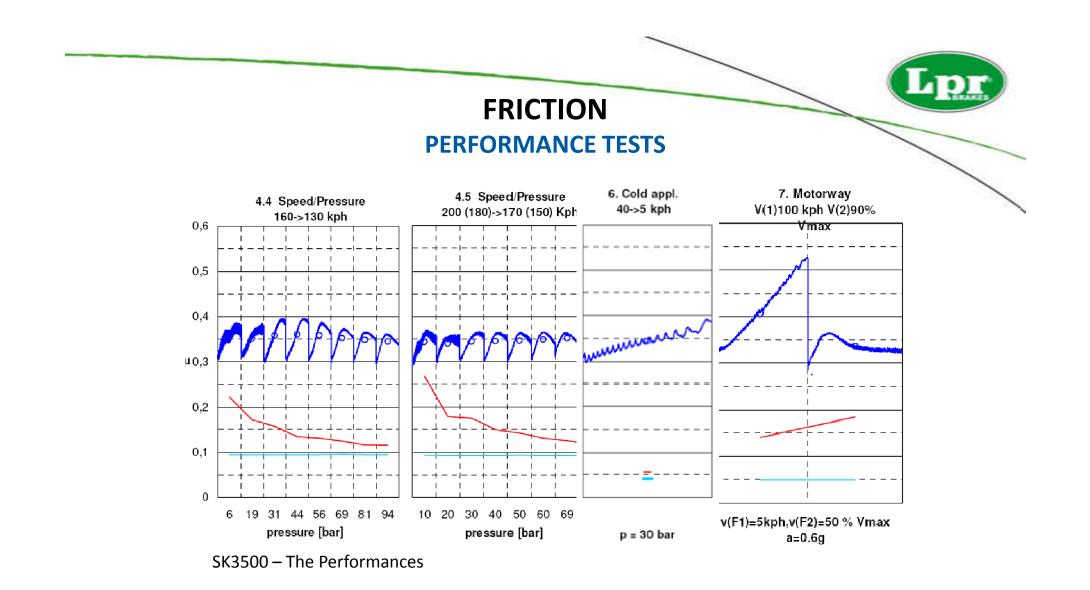
✓ AK Master

It is the most important European Standard for the evaluation of friction material behaviour under different conditions of :

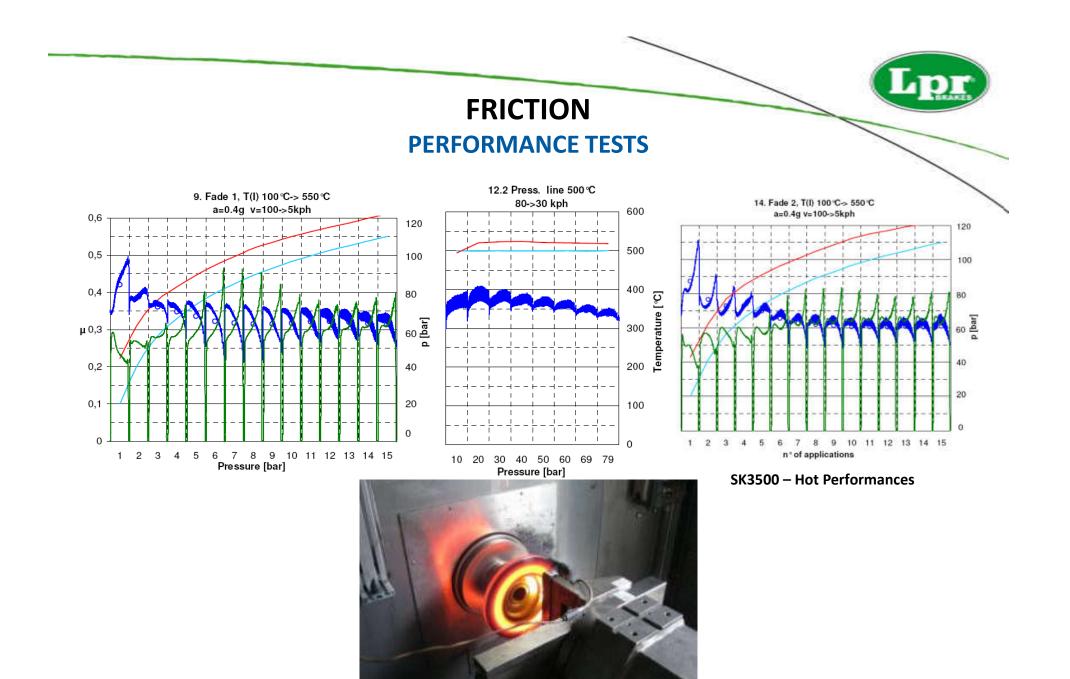
Pressure (pressure sensitivity) Temperature (fade sections) Speed (speed sensitivity)


✓ AK Noise

It is the most important European standard for the noise evaluation

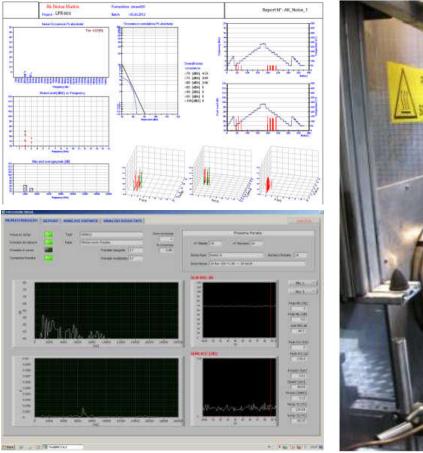

✓ **PSTP1** – internal Lpr spec for performance evaluation

Same as AK Master, but at constant torque


- ✓ **PSTP3** internal Lpr spec for wear evaluation
- ✓ Road test as per ECE R90 requirements

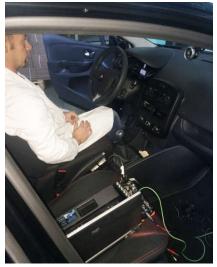
Premium – AK MASTER

Differents conditions of speed and temperature but always the same brake power!


FRICTION PERFORMANCE TESTS

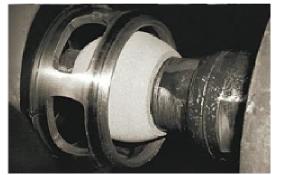
Lpr vs Premium comparison of results

SK3500			_	Premium		
	ø	min.			ø	min.
µop =	0,40			µop =	0,54	
μ120 =	0,39			μ120 =	0,44	
μvmax =	0,35			µvmax =	0,34	
$\mu op =$	0,38			µop =	0,39	
μ40 =	0,34			μ40 =	0,29	
μ MW =	0,34			μ MW =	0,37	
$\mu op =$	0,37			µop =	0,42	
μ F 1 =		0,30		μF1 =		0,25
μop =	0,40			µop =	0,44	
μ500 =		0,34		μ500 =		0,33
$\mu op =$	0,40			µop =	0,44	
μF2 =		0,31		μF2 =		0,32
$\mu op =$	0,35			µop =	0,40	
µnom =	0,37			µnom =	0,41	
µmin =		0,30		µmin =		0,25

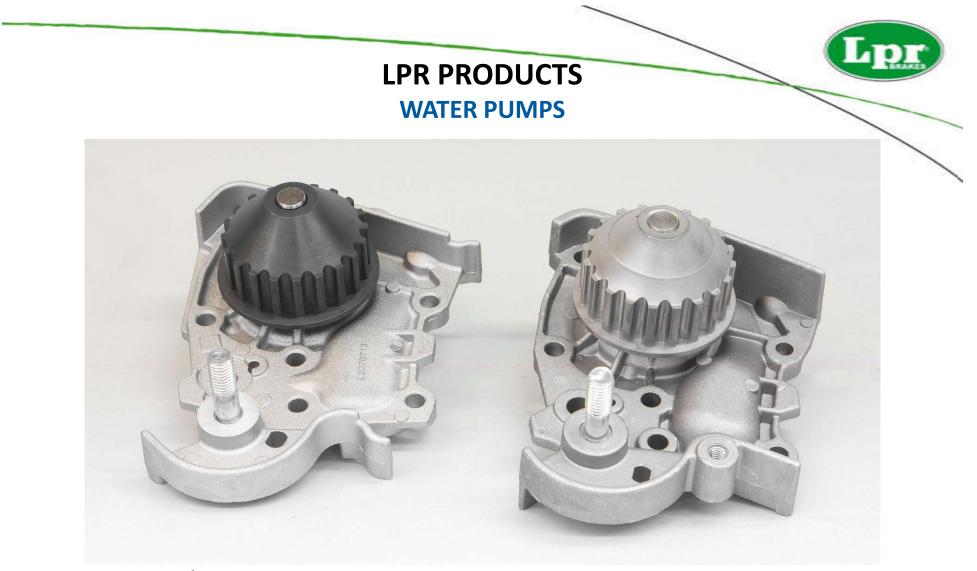

<u>90</u>

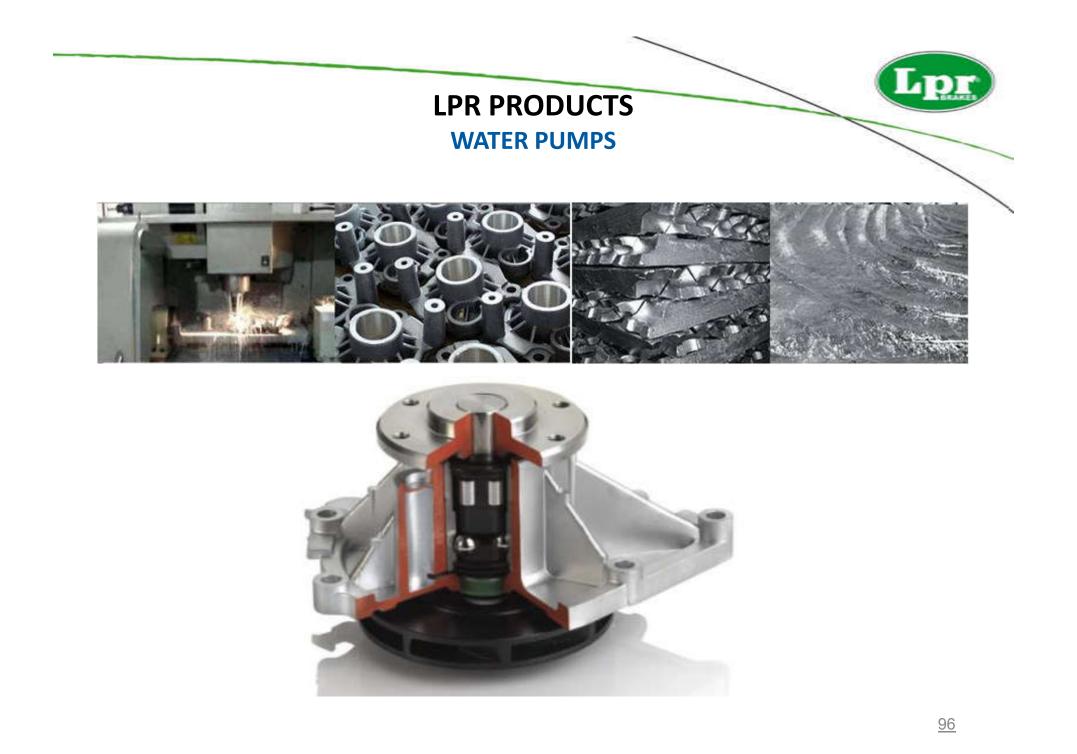
FRICTION ROAD TESTS

ECE R90 approval is made inside our own plant upon TUV authorization.



✓ 97% Car parc coverage


C.V. JOINTS & DRIVESHAFTS PRODUCTION



A range of:

- ✓ 706 Water Pumps
- ✓ 89% Car parc coverage

LPR PRODUCTS WATER PUMPS

Production

Assembly

Laboratory Test

LPR PRODUCTS DESIGN

Without the customer drawings, the design of an *aftermarket* product follows the form, fit & function principle.

Through the *reverse engineering* of the original sample, we build the tridimensional model of the pump: in this way, we guarantee dimensional equivalency and interchangeability. Performance equivalency is verified by comparison of the characteristic curves, detected on the test bench in our laboratory, and by all the tests forecasted by Fiat Auto specifications (9.02320/01).

The different phases of the product and process design, from the feasibility analysis up to the final validation, are planned and monitored through the APQP, periodically reviewed by the multidisciplinary team with respect to the activities proceeding and timing.

LPR PRODUCTS PRODUCT VALIDATION

At the end of the design planning, product validation is carried out according to Fiat Auto specifications (9.02320/01).

Static leak test at room temperature

- Static leak test at -20°C
- Dynamic leak test at 90°C
- Performance test at room temperature
- Performance test at 90°C

- ➤ Life test
- Check of impeller-hub adhesion
- > Thermal cycles
- Forced thermal aging

LPR PRODUCTS MACHINING

- n. 2 CNC working centers CHIRON FZ18W
- ➤ 4 controlled axis (x,y,z + rotating table)
- ➤ automatic pallet change
- productivity up to 100 pcs/h
- n. 1 CNC working center TRAUB TVC350P
- 3 controlled axis
- ➤ automatic pallet change
- n. 2 CNC vertical turning machines DOOSAN PUMA V400
- 2 controlled axis
- > auto centering diameter up to 300 mm
- productivity up to 100 pcs/h

LPR PRODUCTS ASSEMBLY

n. 1 semi-automatic assembly machine

2 presses with controlled axis for fitting bearing/mechanical seal and flange/impeller

➤ automatic control of the fitting load of bearing, mechanical seal, flange and impeller

> productivity up to 100 pcs/h

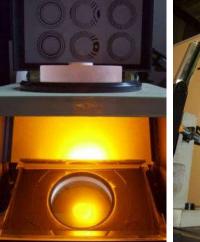
LPR PRODUCTS ASSEMBLY

- n. 1 automatic assembly machine
- > 2 presses with controlled axis for fitting bearing/mechanical seal and flange/impeller
- > in-line static leak test with automatic scrap of discrepant parts
- > automatic control of the fitting load of bearing, mechanical seal, flange and impeller
- > productivity up to 200 pcs/h

LPR PRODUCTS LEAK TEST

After assembly pumps are 100% leak-tested with a special machine for testing the absence of leaks. An automated control will detect discrepant parts and automatically lock them in station to prevent further processing; test success is shown by a green spot on the body pump.

LPR PRODUCTS METROLOGY LAB



MEASUREMENT CAPABILITY OF THE LABORATORY:

- ➢ 3D coordinates measuring machine WERTH SCOPE-CHECK
- Roundness, concentricity, radial runout
- ➢ Hardness Rockwell A, B, C
- Roughness
- Coating thickness
- Vibrations (integral shaft bearings)
- Flatness of lapped surfaces
- Precision balance

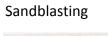
LPR PRODUCTS CALIPERS, PULLEYS AND BELT TENSIONERS

A range of:

- ✓ 1485 Brake Calipers
- ✓ 515 Pulley & Belt Tensioners
- ✓ 97% Car parc coverage

LPR PRODUCTS BRAKE CALIPERS RECONDITIONING

All duly checked throughout the whole production process, in order to have a safe and high quality product.



106

LPR PRODUCTS **CALIPERS** Washing machine 14 • Total dis-assemble of old cores

• Total degrease with our washing machine

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Replacement of all rubber components

Refurbishment with all the accessories required included

CALIPERS TEST

All the brake calipers reconditioned are tested at 100%

Pressure test:

TRACEABILITY CODE

After testing, calipers are marked with month and year as traceability code (batch number) and guarantee only one recondition process for each old cores.

OTHER TESTS:

- Residual torque absorption verification
- Complete sliding pressure of the caliper
- Burst test
- Salt spray

A range of:

- ✓ 255 Brake Pads Wear Indicator
- ✓ 2599 Brake, Clutch and Accelerator Cables
- ✓ 97% Car parc coverage

LPR PRODUCTS

CONTROL CABLES TODAY:

After Market Division

- Brake Cables
- Clutch Cables
- Speedometer Cables
- Bonet Cables
- Private label
- Delivery time guarantee
- More them 4.000 items

OEM Division

- Bowden
- Brake cables
- Push-Pull cables
- Gear control cables
- Levers
- Complete system
- Co Engineering
- Zero PPM
- Cars & Trucks application
- Motorcycle
- Tractors

<u>112</u>

LPR PRODUCTS ENGINEERING SUPPORT

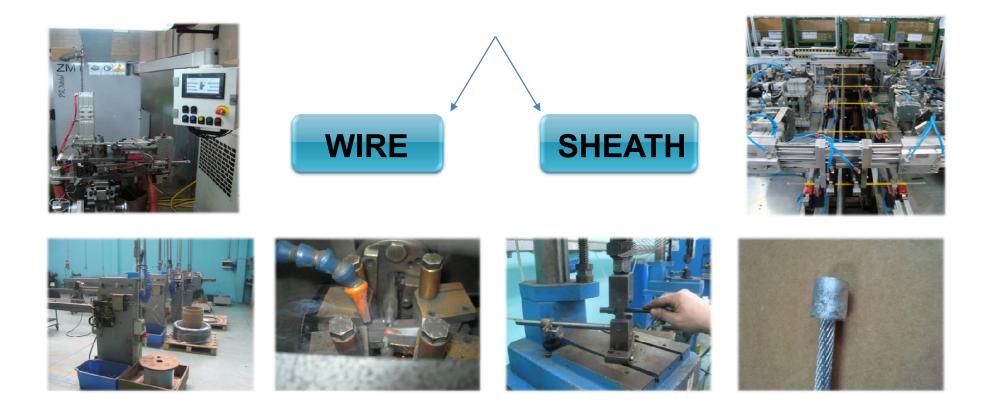
After Market Division

- New to range every 6 months
- Support for warranty troubles
- Supply drawings

OEM Division

- Co Engineering
- Reverse Engineering
- Quality support
- Time test & report
- 3D projects

LPR PRODUCTS CONTROL CABLES



- 12.000 covered square mts
- Time test room
- Warehouse
- Automation lines

LPR PRODUCTS BENCH TEST

- Each item is tested by comparison with the corrispondent OEM
- A special bench is used for testing: it surveys both the traction load on the lever and the load on the wheel
- The ratio has never to be lower than Oem values.

LPR PRODUCTS TEST

- VOLUMETRIC EXPANSION TEST

- SALT SPRAY

- TENSILE TEST

- OZONE TEST

Test start

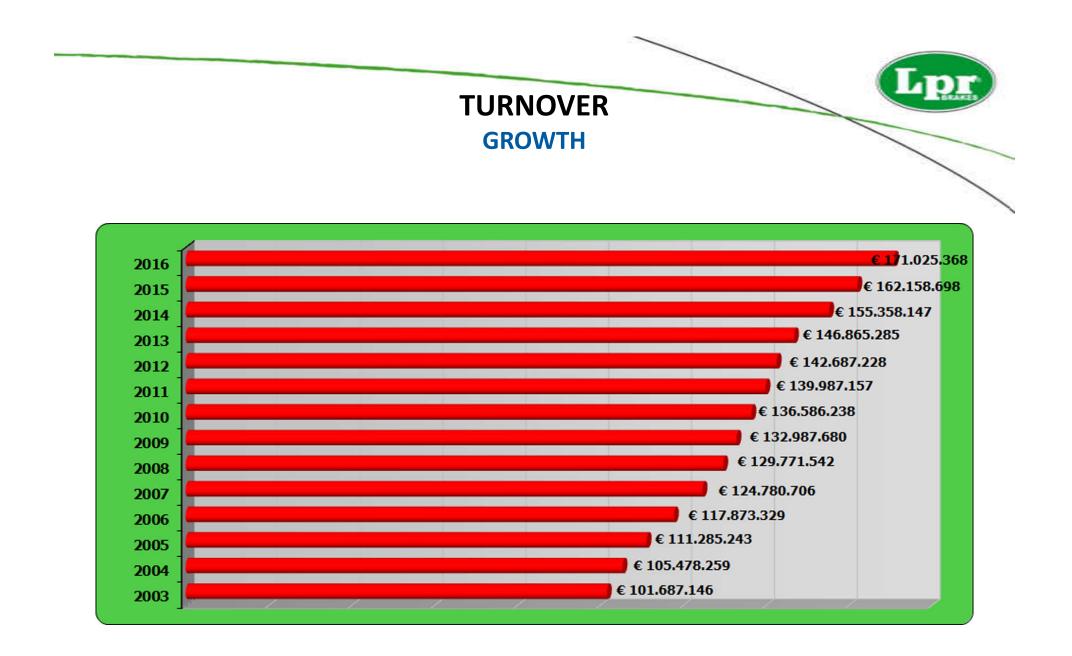
TT Set 1 start

LPR CUSTOMERS **O.E.M AND AFTERMARKET**

OEM/OES Clients

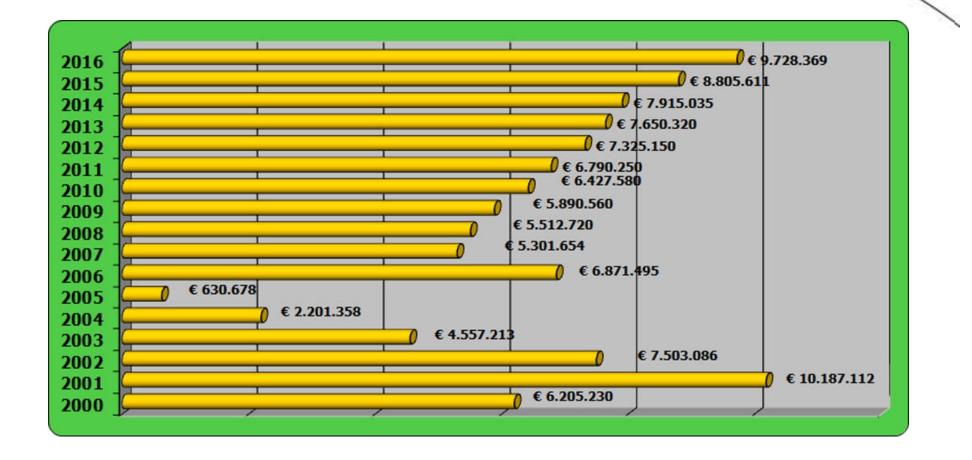
FERRARI FIAT MASERATI PIAGGIO **OM-IVECO** RENAULT **IRAN KODRO** LADA

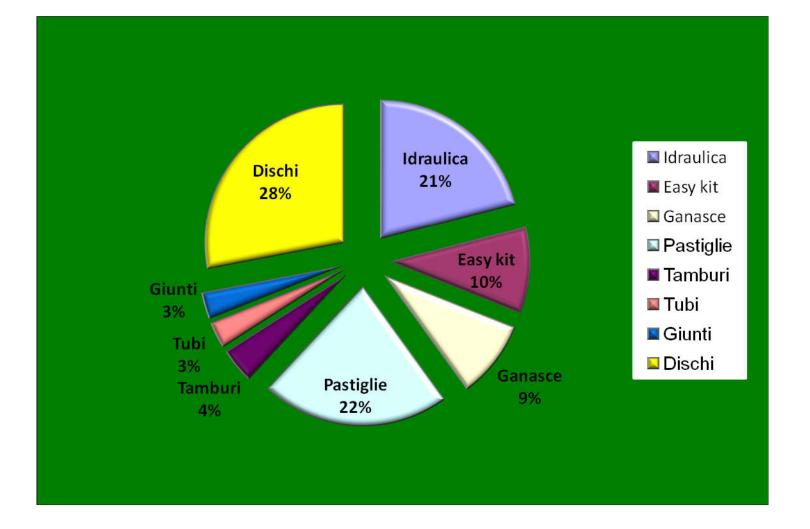
MASERA'

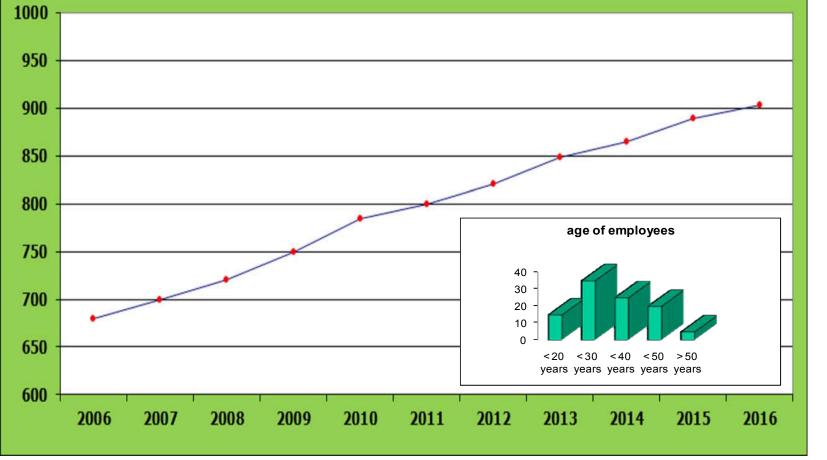


AFTERMARKET CLIENTS:

HONEYWELL BENDIX	BREMBO	BOSCH
MOTRIO	MIDAS	FERODO
AFFINIA GROUP	NORAUTO	MINTEX
FEDERAL MOGUL	GM	TEXTAR
FEBI	PSA PEUGEOT CITROEN	RENAULT MOTRIO
BENDIX USA	DELPHI LOCKHEED	MAGNETI MARELLI
FORD-MOTORCRAFT	ADI	ZF
ATR GROUP	PAGID	



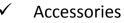



INNOVATION AND QUALITY

INVESTMENTS INNOVATION AND QUALITY

EMPLOYEES MANY SKILLED EMPLOYEES FOR EACH CLIENT

INVESTMENTS ENVIRONMENT FRIENDLY



The three new photovoltaic installations, introduced in 2012, enabled LPR to reduce environmental pollution significantly, by reducing electricity consumption from ordinary sources.

LPR PRODUCTS FINAL CHECK

Prior to despatch every order is checked to make sure everything is correct:

✓ Article

- ✓ Marking
- ✓ Packaging
 - ´ Label


CONIC

Once approved by Quality dept. the goods are picked up and shipped

WINNING CHOICES...NOT ONLY ON THE MARKETS

<u>126</u>

SPONSORING WINNING CHOICES...NOT ONLY ON THE MARKETS

